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USING (JCLR)-PROPERTY TO PROVE HYBRID FIXED POINT

THEOREMS VIA QUASI F -CONTRACTIONS
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Abstract. The purpose of this paper is to prove some coincidence and common fixed point

results for two hybrid pairs of coincidentally idempotent and quasi-coincidentally commuting

mappings satisfying multi-valued F -contraction condition using joint common limit range prop-

erty. We also prove some results for hybrid pairs of mappings which satisfy an F -contractive

condition of Hardy-Rogers type. Consequently, a host of existing results are generalized and

improved. Furthermore, we adopt some examples to demonstrate the realized improvements in

our results proved herein.

Keywords: metric space, multi-valued mappings, quasi-coincidentally commuting mappings,

common limit range property, common fixed point.

AMS Subject Classification: 47H09, 47H10, 54H25.

1. Introduction

The important Banach contraction principle is one of the cornerstones in the development

of Nonlinear Analysis. Metric fixed point theory continues to be an active area of research

under the ambit of non-linear analysis. The Banach contraction principle remains a source

of inspiration for the researchers of this domain which was established by Banach [7] in 1922.

Therefore, generalizations of the Banach contraction principle have been explored heavily by

many authors.

Von Neumann originally initiated the fixed point theory for multivalued mappimgs in the

study of game theory. Fixed point results for multivalued mappings are quite useful in control

theory and have been frequently used in solving many problems of economics and game theory.

The development of the geometric fixed point theory for multivalued mappings was initiated

with the work of Nadler [29] in 1969. He used the concept of Hausdorff metric to establish the

multivalued contraction principle containing the Banach contraction principle as a particular

case, as follows.

Theorem 1.1. Let (X, d) be a complete metric space and a mapping T from X into CB(X)

such that for all x, y ∈ X,

H(Tx, Ty) ≤ λd(x, y),

where λ ∈ [0, 1). Then T has a fixed point, that is, there exists a point x ∈ X such that x ∈ Tx.
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The first ever use of a weak commutativity condition in a hybrid setting can be traced back

to a paper [21] due to Itoh and Takahashi in 1977 while the regular use of a weak commutativity

condition mostly belongs to Sessa [40] which appeared in 1982. Kaneko and Sessa [27] weakened

the notion of weak commutativity by extending the idea of compatibility (due to Jungck [22])

to a hybrid pair of mappings. Pathak [34] extended the concept of compatibility (due to Jungck

[23]) by defining weak compatibility for hybrid pairs of mappings (including single-valued case

also) and utilized the same to prove results on the existence of coincidence and common fixed

points. Several authors have proved coincidence and common fixed point theorems in metric

spaces satisfying hybrid-type contraction conditions (e.g. [6, 9, 10, 11, 34, 35, 44]).

It is well known that strict contractive conditions do not ensure the existence of fixed points

unless the underlying space is assumed to be compact relatively more substantial conditions

replaced the contractive conditions. In 2004, Kamran [25] extended the idea of the property

(E.A) (due to Aamri and Moutawakil [1]) to a hybrid pair of mappings and proved some fixed

point results. Imdad and Ali [17] pointed out that the property (E.A) buys the suitable required

containment between the range of one mapping into the range of other mappings of the pair.

In 2005, Liu et al. [28] investigated a new property for two hybrid pairs of mappings and term

the same as common property (E.A) which reduces to the property (E.A) whenever restricted

to a single pair. By using this interesting property, they extended the results of Kamran [25].

Also, Ali and Imdad [5] studied the notion of non-compatible mappings (due to Pant [32]) in

the hybrid setting.

In 2011, Samet and Vetro [39] pointed out an error in the proof of Theorem 1 of Rhoades et

al. [38] and proved some results on coincidence points for a hybrid pair of mappings satisfying

ϕ-contractive condition in the presence of the property (E.A). Damjanović et al. [8] obtained

a coincidence point theorem for two hybrid pairs of mappings which improved the results of

Gordji et al. [13]. Sintunavarat and Kumam [47] proposed the idea of ‘common limit range

property’ for single-valued mappings which never demands the completeness (or closedness) of

the underlying subspaces. Most recently, Imdad et al. [19] defined the notion of common limit

range property for a hybrid pair of mappings and proved some fixed point results in symmetric

spaces. Motivated by the idea of Liu et al. [28], Imdad et al. [20] extended the notion of

common limit range property to pair of self mappings and obtained some fixed point theorems

in Menger and metric spaces. In the recent past, several authors have contributed to the vigorous

development of metric fixed point theory for hybrid pair of mappings (e.g. [4, 5, 12, 14-17, 26,

30, 36, 42, 43, 45, 46, 48, 49, 52]).

The paper aims to prove some coincidence and common fixed point theorems for two hybrid

pairs of coincidentally idempotent and quasi-coincidentally commuting mappings satisfying joint

common limit range property. We also prove some results for hybrid pairs of mappings which

satisfy an F -contractive condition of Hardy-Rogers type. Consequently, a host of existing results

are generalized and improved. Furthermore, we adopt some examples to demonstrate the realized

improvements in our results proved herein.

2. Preliminaries

The following definitions and results are needed in the subsequent discussion.

Definition 2.1. Let (X, d) be a metric space. A subset A of X is said to be

(i) closed if A = A where A = {x ∈ X : d(x,A) = 0},
(ii) bounded if δ(A) < ∞ where δ(A) = sup{d(a, b) : a, b ∈ A}.



H.K. NASHINE et al.: USING (JCLR)-PROPERTY TO PROVE HYBRID FIXED ... 45

Let (X, d) be a metric space. Then, on the lines of Nadler [29], we adopt

• 2X : the collection of all subsets of X,

• CL(X) = {A : A is a non-empty closed subset of X},
• CB(X) = {A : A is a non-empty closed and bounded subset of X},
• for non-empty closed and bounded subsets A,B of X and x ∈ X,

d(x,A) = inf{d(x, a) : a ∈ A},

and

H(A,B) = max {{sup d(a,B) : a ∈ A}, {sup d(A, b) : b ∈ B}} .
It can be pointed out that CB(X) is a metric space equipped with the distance H which is

known as the Hausdorff-Pompeiu metric on CB(X) provided (X, d) is a metric space.

Definition 2.2. [32] Let (X, d) be a metric space with T : X → CB(X) and g : X → X. The

hybrid pair (T, g) is said to be an R-weakly commuting if for given x ∈ X, gTx ∈ CB(X), there

exists some positive real number R such that H(Tgx, gTx) ≤ Rd(Tx, gx).

Definition 2.3. [27] Let (X, d) be a metric space with T : X → CB(X) and g : X →
X. The hybrid pair (T, g) is said to be a compatible if gTx ∈ CB(X) for all x ∈ X and

lim
n→∞

H(Tgxn, gTxn) = 0 whenever {xn} is a sequence in X, for some t ∈ X and A ∈ CB(X)

such that lim
n→∞

gxn = t ∈ A = lim
n→∞

Txn.

Here it can be pointed out that compatible mappings need not be R-weakly commuting (see

[32]). Also, on the points of coincidence R-weak commutativity is equivalent to commutativ-

ity and remains a necessary minimal condition for the existence of common fixed points for

contractive type mappings.

Definition 2.4. [5] Let (X, d) be a metric space with T : X → CB(X) and g : X → X. The

hybrid pair (T, g) is said to be a non-compatible if there exists at least one sequence {xn} in X,

for some t ∈ X and A ∈ CB(X) such that lim
n→∞

gxn = t ∈ A = lim
n→∞

Txn but lim
n→∞

H(Tgxn, gTxn)

is either non-zero or nonexistent.

Now we define the following definitions for non-self mappings:

Definition 2.5. [24, 34] Let (X, d) be a metric space whereas Y an arbitrary non-empty set with

T : Y → 2X and g : Y → X. The hybrid pair (T, g) is said to be a weakly compatible if they

commute at their coincidence points, that is, gTx = Tgx whenever gx ∈ Tx.

Definition 2.6. [15] Let (X, d) be a metric space whereas Y an arbitrary non-empty set with

T : Y → 2X and g : Y → X. The hybrid pair (T, g) is said to be a quasi-coincidentally

commuting if gx ∈ Tx (for x ∈ X with Tx, gx ∈ Y ) implies gTx is contained in Tgx.

Definition 2.7. [15] Let (X, d) be a metric space whereas Y an arbitrary non-empty set with

T : Y → 2X and g : Y → X. The mapping g is said to be a coincidentally idempotent with

respect to the mapping T , if gx ∈ Tx with gx ∈ Y imply ggx = gx, that is, g is idempotent at

coincidence points of the pair (T, g).

Definition 2.8. [25] Let (X, d) be a metric space whereas Y an arbitrary non-empty set with

T : Y → CB(X) and g : Y → X. Then the hybrid pair (T, g) is said to satisfy the property

(E.A) if there exists a sequence {xn} in Y , for some t ∈ X and A ∈ CB(X) such that

lim
n→∞

gxn = t ∈ A = lim
n→∞

Txn.
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Definition 2.9. [28] Let (X, d) be a metric space whereas Y an arbitrary non-empty set with

T, S : Y → CB(X) and f, g : Y → X. Then the hybrid pairs (T, f) and (S, g) are said to satisfy

the common property (E.A) if there exist two sequences {xn} and {yn} in Y , for some t ∈ Y

and A,B ∈ CB(X) such that

lim
n→∞

Txn = A, lim
n→∞

Syn = B, lim
n→∞

fxn = lim
n→∞

gyn = t ∈ A ∩B.

Definition 2.10. [18] Let (X, d) be a metric space whereas Y an arbitrary non-empty set with

T : Y → CB(X) and g : Y → X. Then the hybrid pair (T, g) is said to satisfy (CLRg) property

if there exists a sequence {xn} in Y , for some u ∈ Y and A ∈ CB(X) such that

lim
n→∞

gxn = gu ∈ A = lim
n→∞

Txn.

One may notice that the notion of common property (E.A) requires the closeness of the un-

derlying subspaces to ascertain the existence of coincidence points. To remove this requirement,

Imdad et al. [18] introduced the notion of Joint Common Limit Range Property (in short

(JCLR) property) for two hybrid pairs of non-self mappings as follows:

Definition 2.11. [18] Let (X, d) be a metric space whereas Y an arbitrary non-empty set with

T, S : Y → CB(X) and f, g : Y → X. Then the hybrid pairs (T, f) and (S, g) are said to have

the (JCLR) property if there exist two sequences {xn} and {yn} in Y and A,B ∈ CB(X) such

that

lim
n→∞

Txn = A, lim
n→∞

Syn = B, lim
n→∞

fxn = lim
n→∞

gyn = t ∈ A ∩B ∩ f(Y ) ∩ g(Y ),

i.e., there exist u and v in Y such that t = fu = gv ∈ A ∩B.

Inspired by Imdad et al. [18], we present some examples which demonstrate the utility of

preceding definition.

Example 2.1. Consider Y = [0, 1] ⊂ [0,∞) = X equipped with the usual metric. Define

F,G : Y → CB(X) and f, g : Y → X as follows:

fx =

{
1− x, if 0 ≤ x ≤ 1

2 ;
4
5 , if 1

2 < x ≤ 1.
gx =

{
1− x2, if 0 ≤ x < 1

2 ;
1
2 , if 1

2 ≤ x ≤ 1.

Fx =

{ [
1
2 ,

3
4

]
, if 0 ≤ x ≤ 1

2 ;[
1
4 ,

1
2

]
, if 1

2 < x ≤ 1.
Gx =

{ [
1
2 ,

3
5

]
, if 0 ≤ x < 1

2 ;[
2
5 ,

x+1
2

]
, if 1

2 ≤ x ≤ 1.

If we choose the esteemed sequences {xn} =
{
1
2 − 1

n

}
n∈N and {yn} =

{
1
2 + 1

n

}
n∈N in Y , then

one can verify that the pairs (F, f) and (G, g) enjoy the (JCLR) property i.e.,

lim
n→∞

Fxn =

[
1

2
,
3

4

]
, lim
n→∞

Gyn =

[
2

5
,
3

4

]
, lim
n→∞

fxn = lim
n→∞

gyn =
1

2
,

where f
(
1
2

)
= g

(
1
2

)
= 1

2 ∈
[
1
2 ,

3
4

]
.

Notice that the (JCLR) property implies the common property (E.A), but the converse im-

plication is not vaild in general. The following example substantiates this view point.

Example 2.2. In the setting of Example 2.1, replace the mappings f and g (besides retaining

the rest):
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fx =

{
1− x, if 0 ≤ x < 1

2 ;
4
5 , if 1

2 ≤ x ≤ 1.
gx =

{
1− x2, if 0 ≤ x ≤ 1

2 ;
1
2 , if 1

2 < x ≤ 1.

If we consider the sequences as in Example 2.1, then one can verify that

lim
n→∞

Fxn =

[
1

2
,
3

4

]
, lim
n→∞

Gyn =

[
2

5
,
3

4

]
, lim
n→∞

fxn = lim
n→∞

gyn =
1

2
(= t),

where 1
2 ∈

[
1
2 ,

3
4

]
. Hence both the pairs (F, f) and (G, g) share the common property (E.A).

However, the pairs (T, f) and (S, g) do not satisfy (JCLR) property due to the fact that there

does not exists any point u in Y such that t = fu.

For the sake of completeness, we use the following notions.

Throughout the article, respectively R, R+ and N stand for the set of all real numbers, the

set of all positive real numbers and the set of all positive integers. In what follows, F stands for

the family of all functions F : R+ → R that satisfy the following conditions

(F1) F is strictly increasing;

(F2) for each sequence {αn} of positive numbers, lim
n→∞

αn = 0 if and only if

lim
n→∞

F (αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Some examples of such functions F ∈ F are F (t) = ln t, F (t) = t + ln t, F (t) = −1/
√
t,

see [51].

In [37], Piri and Kumam replaced the condition (F3) with continuity of F .

We denote by F, the family of all strictly increasing and continuous functions F : R+ → R.
Here, it can be pointed out that the family F is different from the family F .

Definition 2.12. [51] Let (X, d) be a metric space. A self-mapping T on X is called an F -

contraction if there exist F ∈ F and τ ∈ R+ such that

τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1)

for all x, y ∈ X with d(Tx, Ty) > 0.

Definition 2.13. [41] Let (X, d) be a metric space. A multivalued mapping T : X → CL(X) is

called a generalized F -contraction if there exist F ∈ F and τ ∈ R+ such that (for all x, y ∈ X

with y ∈ Tx, for some z ∈ Ty with d(y, z) > 0)

τ + F (d(y, z)) ≤ F

(
max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
[d(x, Ty) + d(y, Tx)]

})
. (2)

Observe that, on choosing F (x) = lnx on Definition 2.13, the condition (2) reduces to the

following (for all x, y ∈ X, z ∈ Ty, y ̸= z)

d(y, z) ≤ e−τ max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
[d(x, Ty) + d(y, Tx)]

}
.

It is clear that for z, y ∈ X such that y = z the previous inequality also holds.

Some fixed point results for single-valued (resp. multivalued) F -contraction are obtained in

[3, 51, 37] (resp. [2, 41, 31, 50]).
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3. Main results

The attempted improvements in this paper are four-fold:

• quasi-coincidentally commuting and coincidentally idempotent notion is used, which is

weaker than coincidentally idempotent in the case when the set of coincidence points is

not empty;

• joint common limit range property (JCLR) is utilized (instead of common property

(E.A));

• any requirement of closedness of the range of f is relaxed;

• a new kind of contractive conditions (so-called F -contraction conditions) are used, that

originated in the work of Wardowski [51].

This section is divided into two parts. In the first subsection, we prove a common fixed point

theorem for two hybrid pairs of quasi-coincidentally commuting and coincidentally idempotent

mappings satisfying multi-valued generalized F -contractions condition via joint common limit

range property in metric spaces. In contrast, in the second subsection, we obtain some results

for two hybrid pairs of mappings which satisfy F -contractive condition of Hardy-Rogers-type.

3.1. Result - I. Our first main result is as follows:

Theorem 3.1. Let (X, d) be a metric space whereas Y an arbitrary non-empty set with T, S :

Y → CB(X) and f, g : Y → X. Assume that there exist F ∈ F and τ ∈ R+ such that

τ + F (H(Tx, Sy)) ≤ F (max {d(fx, gy), d(fx, Tx), d(gy, Sy), d(fx, Sy), d(gy, Tx)}) , (3)

for all x, y ∈ X with H(Tx, Sy) > 0. Suppose that the pairs (T, f) and (S, g) enjoy the (JCLR)

property. Then the each pairs (T, f) and (S, g) have a coincidence point .

Moreover, if Y ⊂ X and the pairs (T, f) and (S, g) are quasi-coincidentally commuting and

coincidentally idempotent, then the pairs (T, f) and (S, g) have a common fixed point in X.

Proof. Since the hybrid pairs (T, f) and (S, g) enjoy the (JCLR) property, there exist two se-

quences {xn} and {yn} in Y and A,B ∈ CB(X) such that

lim
n→∞

fxn = t ∈ A = lim
n→∞

Txn, lim
n→∞

gyn = t ∈ B = lim
n→∞

Syn,

for some u, v ∈ Y and t = fv = gu ∈ A ∩ B. We assert that gu ∈ Su. If not, then using

condition (3), we get

τ + F (H(Txn, Su)) ≤ F (max {d(fxn, gu), d(fxn, Txn), d(gu, Su), d(fxn, Su), d(gu, Txn)}) .

Taking the limit as n → ∞, we have

τ + F (H(A,Su)) ≤ F (max {0, d(gu,A), d(gu, Su), d(gu, Su), d(gu,A)}) .

Since τ > 0 and F is strictly increasing, we have

H(A,Su) < max {0, 0, d(gu, Su), d(gu, Su), 0} = d(gu, Su).

Since t = fv = gu ∈ A ∩B, it follows from the definition of Hausdorff metric that

d(gu, Su) ≤ H(A,Su) < d(gu, Su),

a contradiction. Hence gu ∈ Su which shows that the pair (S, g) has a coincidence point u in

Y .
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Now we show that fv ∈ Tv, if not, then using inequality (3), one obtains

F (d(Tv, fv)) = F (d(Tv, gu))

< τ + F (H(Tv, Su))

≤ F (max {d(fv, gu), d(fv, Tv), d(gu, Su), d(fv, Su), d(gu, Tv)})
= F (max {0, d(fv, Tv), 0, 0, d(fv, Tv)})
= F (d(Tv, fu)),

a contradiction. Hence fv ∈ Tv which shows that the pair (T, f) has a coincidence point v in

Y .

Suppose that Y ⊂ X. Since v is a coincidence point of the pair (T, f), which is quasi-

coincidentally commuting and coincidentally idempotent with respect to mapping T , we have

fv ∈ Tv and ffv = fv, therefore fv = ffv ∈ f(Tv) ⊂ T (fv) which shows that fv is a common

fixed point of the pair (T, f). Similarly, u is a coincidence point of the pair (S, g) which is

quasi-coincidentally commuting and coincidentally idempotent concerning mapping S, one can

easily show that gu is a common fixed point of the pair (S, g). The analogous arguments work

for the alternate statement as well. This completes the proof. �

Now, we obtain the following corollaries.

Corollary 3.1. Let (X, d) be a metric space whereas Y an arbitrary non-empty set. Let T, S :

Y → CB(X) be upper semicontinuous and f, g : Y → X. Assume that there exist F ∈ F and

τ ∈ R+ such that

τ + F (H(Tx, Sy)) ≤ F (max {d(fx, gy), d(fx, Tx), d(gy, Sy), d(fx, Sy), d(gy, Tx)}) , (4)

for all x, y ∈ X with H(Tx, Sy) > 0. Suppose that the pairs (T, f) and (S, g) enjoy the (JCLR)

property. Then the each hybrid pairs (T, f) and (S, g) have a coincidence point.

Moreover, if Y ⊂ X and the pairs (T, f) and (S, g) are quasi-coincidentally commuting and

coincidentally idempotent, then the pairs (T, f) and (S, g) have a common fixed point in X.

Proof. All the requirements of Theorem 3.1 are fulfilled and hence the result follows on the same

line of proof of Theorem 3.1. �

Corollary 3.2. Let (X, d) be a metric space whereas Y an arbitrary non-empty set with T, S :

Y → CB(X) and f, g : Y → X. Suppose that the hybrid pairs (T, f) and (S, g) share the common

property (E.A) and satisfy inequality (3). If f(Y ) and g(Y ) are closed subsets of X, then the

each pairs (T, f) and (S, g) have a point of coincidence.

In particular, if Y ⊂ X and the pairs (T, f) and (S, g) are quasi-coincidentally commuting

and coincidentally idempotent, then the pairs (T, f) and (S, g) have a common fixed point in X.

Proof. If the pairs (T, f) and (S, g) share the common property (E.A), then there exist two

sequences {xn} and {yn} in Y and some t ∈ X, A,B ∈ CB(X) such that

lim
n→∞

fxn = t ∈ A = lim
n→∞

Txn, lim
n→∞

gyn = t ∈ B = lim
n→∞

Syn.

As f(Y ) and g(Y ) are closed subsets of X, there exist u and v in X such that t = fu = gv

for some u, v ∈ Y . Hence the hybrids pairs (T, f) and (S, g) satisfy the (JCLR) property. The

rest of the proof runs on the lines of the proof of Theorem 3.1. �

Notice that a non-compatible hybrid pair always satisfies the property (E.A). Hence, we get

the following corollary.
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Corollary 3.3. Let (X, d) be a metric space whereas Y an arbitrary non-empty set with T, S :

Y → CB(X) and f, g : Y → X. Suppose that the hybrid pairs (T, f) and (S, g) share the non-

compatible property and satisfy inequality (3). If f(Y ) and g(Y ) are closed subsets of X, then

the each pairs (T, f) and (S, g) have a point of coincidence.

In particular, if Y ⊂ X and the pairs (T, f) and (S, g) are quasi-coincidentally commuting

and coincidentally idempotent, then the pairs (T, f) and (S, g) have a common fixed point in X.

3.2. Result - II. Our second main result is as follows:

Theorem 3.2. Let (X, d) be a metric space whereas Y an arbitrary non-empty set with T, S :

Y → CB(X) and f, g : Y → X. Assume that there exist F ∈ F and τ ∈ R+ such that

τ +F (H(Tx, Sy)) ≤ F (αd(fx, gy)+β d(fx, Tx)+ γ d(gy, Sy)+ δ d(fx, Sy)+ ε d(gy, Tx)), (5)

for all x, y ∈ X with H(Tx, Sy) > 0 and α, β, γ, δ, ε ≥ 0 with α + β + γ + δ + ε < 1. Suppose

that the pairs (T, f) and (S, g) enjoy the (JCLR) property. Then the each pairs (T, f) and (S, g)

have a coincidence point.

Moreover, if Y ⊂ X and the pairs (T, f) and (S, g) are quasi-coincidentally commuting and

coincidentally idempotent, then the pairs (T, f) and (S, g) have a common fixed point in X.

Proof. Since the pairs (T, f) and (S, g) enjoy the (JCLR) property, there exist two sequences

{xn} and {yn} in Y and A,B ∈ CB(X) such that

lim
n→∞

fxn = t ∈ A = lim
n→∞

Txn, lim
n→∞

gyn = t ∈ B = lim
n→∞

Syn,

for some u, v ∈ Y and t = fv = gu ∈ A ∩ B. We assert that gu ∈ Su. If not, then using

condition (5), one obtains

τ + F (H(Txn, Su)) ≤ F (αd(fxn, gu) + β d(fxn, Txn) + γ d(gu, Su)

+δ d(fxn, Su) + ε d(gu, Txn)). (6)

Taking the limit as n → ∞ in (6), we have

τ + F (H(A,Su)) ≤ F ((γ + δ)d(gu, Su)).

Since τ > 0 and F is strictly increasing, it follows that

d(gu, Su) ≤ H(A,Su) < (γ + δ)d(gu, Su).

which is a contradiction as γ + δ < 1. Hence gu ∈ Su which shows that u ∈ Y is a coincidence

point of the pair (S, g).

Now we assert that fv ∈ Tv. On using inequality (5), one gets

F (d(Tv, fv)) = F (d(Tv, gu))

< τ + F (H(Tv, Su))

≤ F (αd(fv, gu) + β d(fv, Tv) + γ d(gu, Su) + δ d(fv, Su) + ε d(gu, Tv))

= F ((β + ε) d(fv, Tv)),

which is a contradiction (as β + ε < 1). Then we have fv ∈ Tv which shows that v ∈ Y is a

coincidence point of the pair (T, f).

The rest of the proof can be completed on the lines of the proof of Theorem 3.1. This

completes the proof. �
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Remark 3.1. Choosing α, β, γ, δ, ε suitably in (5) of Theorem 3.2, one can deduce a multitude

of corollaries.

In [33], Pant and Pant introduced the notion of conditionally commuting for a hybrid pair of

mappings which is the weakest form of the commutativity. We unitize this concept to derive a

new result. For this first, we define it.

Definition 3.1. [33] Let (X, d) be a metric space whereas Y an arbitrary non-empty set with

F : Y → 2X and f : Y → X. The hybrid pair (F, f) is said to be a conditionally commuting if

they commute on a non-empty subset of the set of coincidence points whenever the set of their

coincidences is non-empty.

Theorem 3.3. Let (X, d) be a metric space whereas Y an arbitrary non-empty set with T, S :

Y → CB(X) and f, g : Y → X satisfying inequality (5) where F ∈ F and τ ∈ R+. Suppose that

the hybrid pairs (T, f) and (S, g) enjoy the (JCLR) property. Then the each pairs (T, f) and

(S, g) have a point of coincidence.

Moreover, if Y ⊂ X, then the pairs (T, f) and (S, g) have a common fixed point provided the

pairs (T, f) and (S, g) are conditionally commuting.

Proof. In view of proof of Theorem 3.2, the each pairs (T, f) and (S, g) have a coincidence point

u, v in Y . Suppose that Y ⊂ X. Since the pair (T, f) is conditionally commuting, two possible

cases arise:

Case I: The pair (T, f) commutes at v ∈ Y ⊂ X, then fv ∈ Tv so that ffv ∈ f(Tv) ⊂ T (fv).

Now we show that fv is a common fixed point of the pair (T, f). If it is not so, then using

inequality (5), one gets

τ + F (H(Tfv, Syn)) ≤ F (αd(ffv, gyn) + β d(ffv, Tfv) + γ d(gyn, Syn)

+δ d(ffv, Syn) + ε d(gyn, T fv)).

Taking the limit as n → ∞, we have

τ + F (H(Tfv,B)) ≤ F (αd(ffv, fv) + β d(ffv, Tfv) + γ d(fv,B)

+δ d(ffv,B) + ε d(fv, Tfv))

= F (αd(ffv, fv) + δ d(ffv,B) + ε d(fv, Tfv)).

Since τ > 0 and F is strictly increasing, it follows that

H(Tfv,B)) ≤ (α+ δ + ε) d(ffv, fv).

Since t = fv = gu ∈ A ∩ B and ffv ∈ Tfv, it follows (owing to the definition of Hausdorff

metric) that

d(ffv, fv) ≤ H(Tfv,B) ≤ (α+ δ + ε)d(ffv, fv),

a contradiction (as α + δ + ε < 1). Hence fv = ffv ∈ Tfv which shows that fv is a common

fixed point of the pair (T, f).

Case II: If T and f do not commute at v, then by virtue of conditional commutativity of T

and f , there exists a coincidence point of T and f at which T and f commute, i.e., there exists

a point v
′
in Y such that fv

′ ∈ Tv
′
and ffv

′ ∈ f(Tv
′
) ⊂ T (fv

′
). Rest of the proof can be

completed on the lines of the Case I when T and f commute at v.

Similarly, we can show that gu is a common fixed point of the pair (S, g). This completes the

proof of the theorem. �

On the setting f = g, in (3) of Theorem 3.1 we deduces the following corollary:
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Corollary 3.4. Let (X, d) be a metric space whereas Y an arbitrary non-empty set with T, S :

Y → CB(X) and g : Y → X. Assume that there exist F ∈ F and τ ∈ R+ such that

τ + F (H(Tx, Sy)) ≤ F (max {d(gx, gy), d(gx, Tx), d(gy, Sy), d(gx, Sy), d(gy, Tx)}) , (7)

for all x, y ∈ X with H(Tx, Sy) > 0. Suppose that the pairs (T, g) and (S, g) enjoy the (JCLR)

property. Then the each pairs (T, g) and (S, g) have a coincidence point .

Moreover, if Y ⊂ X and the pairs (T, g) and (S, g) are quasi-coincidentally commuting and

coincidentally idempotent, then the pairs (T, g) and (S, g) have a common fixed point in X.

On the setting T = S, in (3) of Theorem 3.1 we deduces the following corollary:

Corollary 3.5. Let (X, d) be a metric space whereas Y an arbitrary non-empty set with T :

Y → CB(X) and f, g : Y → X. Assume that there exist F ∈ F and τ ∈ R+ such that

τ + F (H(Tx, Ty)) ≤ F (max {d(fx, gy), d(fx, Tx), d(gy, Ty), d(fx, Ty), d(gy, Tx)}) , (8)

for all x, y ∈ X with H(Tx, Ty) > 0. Suppose that the pairs (T, f) and (T, g) enjoy the (JCLR)

property. Then the each pairs (T, f) and (T, g) have a coincidence point .

Moreover, if Y ⊂ X and the pairs (T, f) and (T, g) are quasi-coincidentally commuting and

coincidentally idempotent, then the pairs (T, f) and (T, g) have a common fixed point in X.

On the setting T = S and f = g, in (3) of Theorem 3.1 we deduces the following corollary:

Corollary 3.6. Let (X, d) be a metric space whereas Y an arbitrary non-empty set with T :

Y → CB(X) and f : Y → X. Assume that there exist F ∈ F and τ ∈ R+ such that

τ + F (H(Tx, Ty)) ≤ F (max {d(gx, gy), d(gx, Tx), d(gy, Ty), d(gx, Ty), d(gy, Tx)}) , (9)

for all x, y ∈ X with H(Tx, Ty) > 0. Suppose that the pair (T, g) enjoys the (CLRg) property.

Then the pair (T, g) has a coincidence point .

Moreover, if Y ⊂ X and the pair (T, g) is quasi-coincidentally commuting and coincidentally

idempotent, then the pair (T, g) has a common fixed point in X.

4. Illustrative examples

Now we furnish examples demonstrating the validity of the hypotheses and degree of generality

of our results over some recently established results.

The following example exhibits the validity of conditions of Theorem 3.1. This example is

inspired by Imdad et al. [18].

Example 4.1. Let Y = [0, 1] ⊂ [0,∞) = X with the usual metric. Define T, S : Y → CB(X)

and f, g : Y → X as follows.

Tx =

{ [
1
3 ,

3
4

]
, if 0 ≤ x ≤ 1

2 ;[
1
4 ,

1
3

]
, if 1

2 < x ≤ 1.
Sx =

{ (
1
2 ,

3
5

]
, if 0 ≤ x < 1

2 ;[
2
5 ,

1+x
2

]
, if 1

2 ≤ x ≤ 1.

fx =

{
1
2 , if 0 ≤ x ≤ 1

2 ;

2x
3 , if 1

2 < x ≤ 1.
gx =

{
1− x

2 , if 0 ≤ x < 1
2 ;

1
2 , if 1

2 ≤ x ≤ 1.
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Choosing two sequences {xn} =
{
1
2 − 1

n

}
n∈N and {yn} =

{
1
2 + 1

n

}
n∈N in Y , one can see that the

pairs (T, f) and (S, g) enjoy the (JCLR) property, i.e.

lim
n→∞

f

(
1

2
− 1

n

)
=

1

2
∈
[
1

3
,
3

4

]
= lim

n→∞
T

(
1

2
− 1

n

)
,

lim
n→∞

g

(
1

2
+

1

n

)
=

1

2
∈
[
2

5
,
3

4

]
= lim

n→∞
S

(
1

2
+

1

n

)
,

where 1
2 = f(12) = g(12) ∈

[
2
5 ,

3
4

]
=

[
1
3 ,

3
4

]
∩
[
2
5 ,

3
4

]
. Now define F : R+ → R be given by

F (x) = lnx. It is clear that F is F is strictly increasing and continuous. Then contractive

condition (3) reduces to

H(Tx, Sy)) ≤ e−τ (max {d(fx, gy), d(fx, Tx), d(gy, Sy), d(fx, Sy), d(gy, Tx)}) , (10)

for all x, y ∈ X with H(Tx, Sy) > 0. By a routine calculation one can show that the contractive

condition (10) holds for every x ̸= y ∈ X and for some fixed τ ∈ R+. Also it is cear that

f(Y ) and g(Y ) are not closed subsets of X. The pairs (T, f) and (S, g) are quasi-coincidentally

commuting at x = 1
2 , i.e., f(12) ∈ T (12), fT (

1
2) =

(
1
3 ,

1
2

]
⊂

[
1
3 ,

3
4

]
= Tf(12) and g(12) ∈ S(12),

gS(12) =
[
3
5 ,

3
4

)
∪ {1

2} ⊂
[
2
5 ,

3
4

]
= Sg(12). Thus, all conditions of Theorem 3.1 are satisfied and

1
2 = f(12) = g(12) ∈ T (12) = S(12).

In the following illustration the importance of (JCLR) property for validity of the result is

shown.

Example 4.2. In the setting of Example 4.1, replace the mapping f by the following:

fx =

{
1
2 , if 0 ≤ x < 1

2 ;

2x
3 , if 1

2 ≤ x ≤ 1.

Then the pairs (T, f) and (S, g) don’t share the (JCLR) property as 1
3 = f(12) ̸= 1

2 = g(12) ∈[
2
5 ,

3
4

]
=

[
1
3 ,

3
4

]
∩
[
2
5 ,

3
4

]
. And so there is no coincidence point of the pairs (T, f) and (S, g).

Now we furnish an example demonstrating that conditions of Theorem 3.1 is only sufficient

and not necessary.

Example 4.3. In the setting of Example 4.1, replace the mapping S by the following:

Sx =

{ [
1
2 ,

3
5

]
, if 0 ≤ x < 1

2 ;[
2
5 ,

1+x
2

]
, if 1

2 ≤ x ≤ 1.

Then the pairs (T, f) and (S, g) enjoy the (JCLR) property for two sequences {xn} =
{
1
2 − 1

n

}
n∈N

and {yn} =
{
1
2 + 1

n

}
n∈N in Y . Also f(Y ) and g(Y ) are not closed subsets of X. The pair (T, f)

is quasi-coincidentally commuting at x = 1
2 but (S, g) does not commute at x = 1

2 as g(12) ∈ S(12),

gS(12) =
[
5
8 ,

3
4

)
∪ {1

2} ̸⊆
[
2
5 ,

3
4

]
= Sg(12). However, these four mappings have a coincidence at

x = 1
2 , which also remains their common fixed point. This confirms that conditions of Theorem

3.1 is sufficient and not necessary.
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5. Conclusions

In this present study, some coincidence and common fixed point results are established for two

hybrid pairs of mappings satisfying multi-valued F -contraction condition using joint common

limit range property. After that some results are proved for hybrid pairs of mappings which

satisfy an F -contractive condition of Hardy-Rogers type. Furthermore, we adopt some examples

to demonstrate the realized improvements in our results proved herein. Consequently, a host of

existing results are generalized and improved.
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